Compact set of invariants characterizing graph states of up to eight qubits
نویسندگان
چکیده
منابع مشابه
dynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اول0 Se p 20 09 Entanglement of graph states up to 8 qubits
The entanglement of graph states up to eight qubits is calculated in the regime of iteration calculation. The entanglement measures could be the relative entropy of entanglement, the logarithmic robustness or the geometric measure. All 146 local inequivalent graphs are classified as two categories: graphs with identical upper LOCC entanglement bound and lower bipartite entanglement bound, graph...
متن کاملOn the ring of local unitary invariants for mixed X-states of two qubits
Entangling properties of a mixed 2-qubit system can be described by the local homogeneous unitary invariant polynomials in elements of the density matrix. The structure of the corresponding invariant polynomial ring for the special subclass of states, the so-called mixed X−states, is established. It is shown that for the X−states there is an injective ring homomorphism of the quotient ring of S...
متن کاملExperimental realization of Dicke states of up to six qubits for multiparty quantum networking.
We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02 with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by 4 standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five...
متن کاملCharacterizing Algebraic Invariants by Differential Radical Invariants
We prove that any invariant algebraic set of a given polynomial vector field can be algebraically represented by one polynomial and a finite set of its successive Lie derivatives. This so-called differential radical characterization relies on a sound abstraction of the reachable set of solutions by the smallest variety that contains it. The characterization leads to a differential radical invar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2009
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.80.012102